

Evaluation of Ethiopian durum wheat (*Triticum turgidum* L. var. *durum*) genotypes for drought tolerance at varying sowing density

Fikeremariam Tegegn Awdamet¹, Andreas Schweiger¹, Jürgen Franzaring¹ and Meseret Tesema Terfa²

¹ University of Hohenheim, Institute of Landscape and Plant Ecology(320b), Germany, ² Hawassa University, College of Agriculture, Ethiopia

Background

- Climate extreme events have become common, particularly droughts and floods.
- These events are pronounced and increased in countries such as Ethiopia in the last ten years relative to the decade before¹.
- Drought is a leading abiotic factor responsible for the reduction in wheat production world wide and particularly in Ethiopia.
- Thus, understanding the fundamental mechanism of drought response in major crops such as wheat is paramount for meaningful crop improvement ².
- In this study, we aimed to identify promising Ethiopian durum wheat genotypes that are better adapted to drought at varying sowing density under greenhouse condition.

Materials and Methods

- A factorial combination of 2 moisture regimes (MR) × 2 sowing densities (SD) × 15 genotypes (G)× 6 replicates = 360 experimental units, Design: CRD.
- Two MR i.e. 80% of field capacity (FC) (control) and 30% of FC (stress), soil moisture content at FC was 36.5% (v/v).
- Two SD: 5 per bucket and 50% more (8 per bucket) were considered.
- Drought was induced from stem elongation stage (BBCH 31) till physiological maturity.
- Data collected were subjected to analysis using SAS software version 9.4. Graphs was

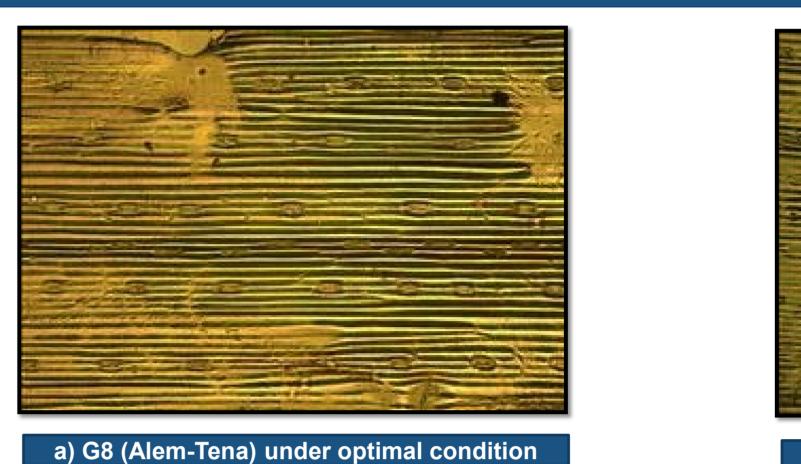
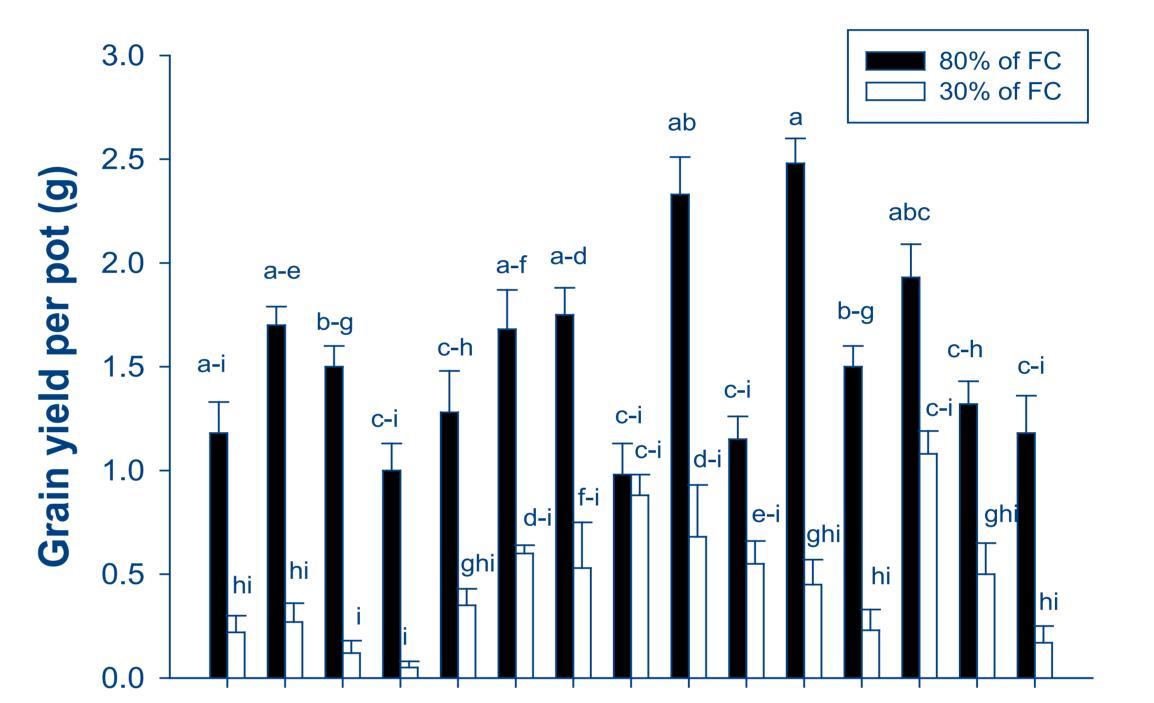



Figure 1. Stomata measurement images for drought tolerant genotype e.g. in Alem-Tena (G8).

plotted by SigmaPlot V.10.

Proc Mixed procedure was pursued considering G and MR as fixed effect while SD as random effect.

Results

Table 1.Analysis of variance (ANOVA) of Ethiopian durum wheat genotypes grown under different moisture regimes for growth and yield and yield related attributes

	No.				G	rowth, yi	eld and y	vield rela	ted traits				
Source of variation	DF	SN_S	g.root	TLAPP	^o (cm²)	NGPS		BYPP (g)	GYPP	(g)	SLA (cm²g⁻¹)
		F-		F-		F-		F-		F-		F-	
		value	Pr>F	value	Pr>F	value	Pr>F	value	Pr>F	value	Pr>F	value	Pr>F
Moisture regimes													
(MR)	1	11.17	0.0022	12.98	0.0004	215.16	<0.0001	127.50	<0.0001	52.27	<0.0001	1.84	0.1768
Genotypes (G)	14	1.26	0.2889	1.58	0.0894	3.39	<0.0001	6.00	<0.0001	2.80	0.0010	1.22	0.2661
MR × G	14	0.45	0.9420	1.16	0.3101	2.89	0.0007	1.44	0.1414	3.41	<0.0001	1.12	0.3449
No.DF, number of deg	ree of	freedom	n; SN Sq.r	oot, the	square roo	ot of stom	ata numb	er; TLAF	PP, total le	af area	per plant ;	NGPS	, Number
Grains per Spike; BYF	PP, Bic	omass Yi	eld per Po	ot in Gra	ms; GYPI	P, Grain Y	'ield per P	ot in gra	ms, and s	specific	leaf area	(cm ² g ⁻).

Table 2. Main effect of moisture regimes and genotypes for stomata number, leaf area per plant and biomass yield

		Total leaf area per			
Moisture regimes	SN_ sq. root	plant (cm ²)	BYPP (g)		
80% of FC	7.04±0.21 ^b	16.06±0.95 ^a	4.30±0.08ª		
30% of FC	8.14±0.24 ^a	9.84±0.61 ^b	2.40±0.06 ^b		
Tukey's HSD	**	***	***		
Genotypes					
G1 (Kilinto) #	6.94±0.18	9.20±1.74	3.31±0.30 ^{ab}		
G2 (Fetan)	6.86±0.55	11.15±2.16	3.13±0.38 ^{bc}		
G3 (Selam)	7.09±0.81	14.73±2.01	3.94±0.46 ^a		
G4 (Metaiya)	8.23±0.10	19.46±2.76	3.62±0.39 ^{ab}		
G5 (Bakelcha)	8.43±0.74	13.39±3.34	3.56±0.32 ^{ab}		
G6 (Denbi)	7.81±1.14	14.77±1.78	3.10±0.32 ^{bc}		
G7 (Bichena)	6.96±0.50	8.79±1.24	3.56±0.34 ^{ab}		
G8 (Alem-Tena) ##	7.58±0.82	13.95±2.18	3.13±0.27 ^{bc}		
G9 (Hitosa)	7.09±0.75	15.95±2.49	3.44±0.27 ^{ab}		
G10 (Arsi-Robe)	8.28±0.65	5.97±0.54	2.56±0.23°		
G11 (Ejersa)	9.29±0.76	16.57±2.81	3.28±0.35 ^{abc}		
G12 (Boohai)	7.78±0.38	18.70±2.31	3.68±0.40 ^{ab}		
G13 (Flakit)	6.80±0.64	7.31±1.51	3.13±0.32 ^{bc}		
G14 (Mangudo)	7.51±0.44	11.26±2.24	3.09±0.25 ^{bc}		
G15 (Malefia)	7.23±0.58	12.90±1.84	3.95±0.36 ^a		
Tukey's HSD	ns	ns	***		

Note: Genotypes marked in green proved to show the least drought effects in terms of yield reductions. G1 G2 G3 G4 G5 G6 G7 G8 G9 G10G11G12G13G14G15

Genotypes

Figure 2. Variation of grain yield of Ethiopian durum wheat genotypes under different moisture regimes. Different letters indicate significant differences among genotypes across different moisture regimes according to Tukey's HSD test (P < 0.05).

- We found that drought had significantly affected most of the parameters studied, including stomata number.
- Variability in grain yield across different moisture regimes was observed, but the response patterns remained the same across genotypes.
- Hence, it will be worthwhile to use combinations of traits to screen and advance genotypes for the next detailed eco-physiological study.

Conclusion

Based on preliminary evaluations, the six best thriving genotypes were selected for further testing in climate chamber experiments.

References

¹FDRE, 2013. Ethiopia's Climate Resilient Green Economy: CLIMATE RESILIENT STRATEGY AGRICULTURE. FDRE, Addis Ababa, Ethiopia. ²Kaur H, et.al., 2021. Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signaling, photosynthetic efficacy, and management.Physiologia Plantarum.172:935962.<u>https://doi.org/10.1111/ppl.13389</u>

Acknowledgements

I would like to express my warm appreciation and put on record my heartfelt gratitude to the FSC/CLIFOOD project for funding my PhD. I would also like to thank both University of Hohenheim and Hawassa University for hosting me to do my research work.

Stomata number value was transformed using square root transformation. Mean ± (Standard error), values with different superscripted letters are significantly different according to Tukey's HSD test (P < 0.05). ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001. ##drought tolerant check; #drought susceptible check.

Fikeremariam Tegegn Awdamet E-mail:fikeremariamtegegn.awdamet@uni-hohenheim.de

